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Exercice 1. Notons X =
(

a b
c d

)
, alors on calcule directement que

AX − XA =
(

c d − a
0 −c

)
.

On voit que X commute avec A si et seulement si a = d et c = 0, donc X est une matrice
du type X =

(
a b
0 a

)
.

Exercice 2. 1. Une base du noyau est fournie par : {(1, 0, 1)}.
2. Le rang de A est égal à 2.
3. On a χA = −X3 + 2X2 − 10X = −X(X2 − 2X + 10).
4. Le polynôme caractéristique n’est pas scindé sur les réels, donc A n’est pas diago-

nalisable sur les réels.
5. Il y a trois valeurs propres distinctes sur C (qui sont 0, 1+3i, 1−3i), donc A est une

matrice diagonalisable sur les complexes (on peut aussi observer que sur le corps
des complexes, le polynôme caractéristique est scindé avec des racines simples, en
effet χA = −X(X − 1 − 3i)(X − 1 + 3i)).

Exercice 3. 1. Non. Par exemple, si P = (X − 1)3 et Q = (X − 1)2 ont les mêmes
racines. L’affirmation est toutefois correcte si on suppose que les racines de f et g
sont simples, ou plus généralement qu’elles ont même multiplicité.

2. Oui. Soit P = a0 + a1X + · · · anXn avec a0, a1, · · · , an ∈ C et an ̸= 0. Donc
deg(f) = n.

Soit Q = b0 +b1X + · · · bmXm avec b0, b1, · · · , bm ∈ C et bm ̸= 0. Donc deg(g) =
m.

Or, P −Q = (a0+a1X+· · · anXn)−(b0+b1X+· · · bmXm) et le degré d’un terme
non nul dans cette formule ne dépasse pas max {n, m}. L’assertion s’en déduit.

Observons que le degré de P − Q peut être strictement plus petit que le maxi-
mum des degrés de P et de Q. Par exemple, si P = X et Q = X −1, alors f −g = 1
qui est de degré 0, strictement plus petit que le maximum des degrés de P et de
Q, qui valent 1 dans cet exemple.

3. Oui. On sait que a ∈ C est une racine d’un polynôme Q ∈ C[X] si et seulement
si Q(a) = 0. Maintenant posons Q = P − P (a). Alors g(a) = f(a) − f(a) = 0 et
donc X − a divise Q = P − P (a). Mais cela se voit directement également, car
pour tout n ∈ N∗, on a

Xn − an = (X − a)(Xn−1 + aXn−2 + a2Xn−3 + · · · + an−2X + an−1).
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4. Non, car on a la factorisation X2 + 2 =
(
X +

√
2i
) (

X −
√

2i
)

dans C[X].

Exercice 4. 1. Le reste de la division de P par Q1 est S1 = −(9X +3) (et le quotient
est R1 = 2X3 + 4X2 + 5X) ; on a en effet

2X5 + X3 − 2X2 + X − 3 = (X2 − 2X + 2)(2X3 + 4X2 + 5X) − (9X + 3),

c’est-à-dire P = Q · R1 + S1.
Appliquons l’algorithme pour trouver ce résultat. On a successivement :

P − 2X3Q1 = 4X4 − 3X3 − 2X2 + X − 3
P − 2X3Q1 − 4X2Q1 = 5X3 − 10X2 + X − 3
P − 2X3Q1 − 4X2Q1 − 5XQ1 = −9X − 3 = −3(X + 3),

ce qui montre que

P = (2X3 + 4X2 + 5X)Q1 − 3(3X + 1).

De même, le reste de la division de P par Q2 est S2 = X − 2 (et le quotient
est R2 = X2 + 1

2)

2X5 + X3 − 2X2 + X − 3 = (2X3 − 2)
(

X2 + 1
2

)
+ (X − 2),

c’est-à-dire P = Q2 · R2 + S2.
En effet, on a

P − X2Q2 = X3 + X − 3

P − X2Q2 − 1
2Q2 = X − 2,

ce qui montre que

P =
(

X2 + 1
2

)
Q2 + X − 2.

2. On rappelle que ζ ∈ C est une racine de Q2 si et seulement si Q2(ζ) = 0. En
particulier pour un tel ζ on a

P (ζ) = Q2(ζ) · R2(ζ) + S2(ζ) = S2(ζ) = ζ − 2.

Les racines de Q2 = 2X3 − 2 = 2(X3 − 1) sont les racines cubiques de l’unité,

c’est-à-dire, α = 1, β = e
2πi

3 = −1
2 + i

√
3

2 et γ = e− 2πi
3 = −1

2 − i

√
3

2 . Donc
P (1) = S2(1) = −1 et de même
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f

(
−1

2 +
√

3
2 i

)
= S2

(
−1

2 + i

√
3

2

)
= −5

2 + i

√
3

2 ,

f

(
−1

2 −
√

3
2 i

)
= S2

(
−1

2 − i

√
3

2

)
= −5

2 − i

√
3

2 .

Remarquez qu’on a calculé ces valeurs en appliquant le polynôme R2 qui est
de degré 1 et en évitant de calculer avec le polynôme Q, qui est de degré 5.

Exercice 5. 1. Comme

P = (X − a)(X − a) = X2 − 2 Re (a) X + |a|2,

ce qui montre que P est réel.
2. Supposons que Q est de la forme

∑n
k=0 akXk avec a0, a1, · · · , an ∈ R.

Comme z est une racine de g, on a g(z) =
∑n

k=0 akzk = 0. On obtient que

Q(z) =
n∑

k=0

akzk =
n∑

i=0

ak zk =
n∑

k=0

akzk = g(z) = 0 = 0,

où on a utilisé le fait que ak = ak, car ak ∈ R.
3. Le seul polynôme irréductible unitaire de degré 0 est le polynôme constant P = 1.

Soit maintenant, P ∈ R[X] un polynôme irréductible unitaire de degré n ≥ 1.
Comme tout polynôme de degré n ≥ 1 admet une racine dans C, on prend z une
racine de f dans C.

Si z ∈ R, alors X − z divise P et donc P = X − z car P est irréductible.
Si z n’est pas réel, son conjugué z est aussi une racine de P d’après b), et donc

(X − z)(X − z) divise P .
Comme (X − z)(X − z) ∈ R[X] d’après a), et comme P est irréductible,

P = (X − z)(X − z).
Notons que le discriminant de (X − z)(X − z) est négatif car les racines ne

sont pas réelles.
Conclusion : Les polynômes irréductibles unitaires dans R[X] sont donc les

polynômes suivants :
(a) Le polynôme constant 1 ∈ R[X].
(b) Les polynômes de la forme X + a avec a ∈ R.
(c) Les polynômes de la forme X2 + bX + c, avec b, c ∈ R, et sans racine réelle

(c’est-à-dire tel que b2 − 4c < 0).
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Exercice 6. 1 L’hypothèse f ◦g ̸= g ◦f entraîne que f et g sont non nuls. Supposons par
l’absurde que f et g sont linéairement dépendants, alors il existe λ ∈ K tel que f = λg,
mais dans ce cas f et g commutent.

(b) Si f ∈ GL(V ), alors 0 n’est pas valeur propre de f (car f est inversible, et 0 ∈ σ(f)
implique que dim Ker(f) > 0). Soit λ ∈ σ(f), et soit v ∈ V \ {0} un vecteur propre de f
de valeur propre λ. Alors,

f(v) = λ v ⇐⇒ v = f−1(λ v) ⇐⇒ f−1(v) = λ−1f−1(λ v) = λ−1v,

ce qui montre que λ−1 ∈ σ(f−1) et v ∈ Eλ−1(f−1). L’argument étant symétrique, on en
déduit que λ ∈ K \ {0} est valeur propre de f si et seulement λ−1 est valeur propre de
f−1. De plus, on a

Eλ(f) = Eλ−1(f−1).
Les multiplicités géométriques de λ pour f et de λ−1 pour f−1 sont donc les mêmes.

Exercice 7. 1. Supposons que x ∈ Ker(f), alors
f(g(x)) = f ◦ g(x) = g ◦ f(x) = g(f(x)) = g(0) = 0.

donc g(x) ∈ Ker(f), ce qui prouve que le noyau de f est invariant par g.

De même, soit y ∈ Im(f), alors il existe x ∈ V tel que f(x) = y, alors on a
g(y) = g ◦ f(x) = f ◦ g(x) = f(g(x)) ∈ Im(f),

ce qui montre que l’image de f est invariant par g.
2. Si Eλ est un espace propre de f associé à la valeur propre λ alors si x ∈ Eλ

f(x) = λ x.

Ainsi g étant un endomorphisme, on a
f(g(x)) = f ◦ g(x) = g ◦ f(x) = g(λ x) = λ g(x).

On peut donc conclure que Eλ est invariant par g.

Exercice 8. La réponse est que rang(f) = 5 pour tout α. En effet, on remarque que
χf = X · (X2 + α X + 1) · (X3 − 1),

en particulier λ = 0 est valeur propre et sa multiplicité algébrique est 1. Donc la multipli-
cité géométrique de λ = 0 est aussi égale à 1. On rappelle que pour toute valeur propre
λ, on a

1 ⩽ multgeomλ(f) ⩽ multalgλ(f).
Donc dim(Ker(f)) = dim(E0(f)) = 1. Et par le théorème du rang,

rang(f) = dim(Im(f)) = 6 − dim(Ker(f)) = 5.
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Exercice 9. 1) Pour chacune des quatre matrices, le polynôme caractéristique est χ =
−(X − α)3 et donc α est l’unique valeur propre dans les trois cas.

La multiplicité géométrique m de α se trouve en calculant la dimension du noyau
de A − α I3 (une méthode efficace pour faire cela est de calculer le rang de A − α I3 et
d’appliquer le théorème du rang).

On trouve que m = 3 pour A1, m = 2 pour A2 et A4 et m = 1 pour A3.

2) Il y a plusieurs critères utiles pour la diagonalisabilité des matrices. L’un de ces
critères dit que la somme des multiplicités géométriques des valeurs propres doit être égale
à la dimension de l’espace vectoriel. Avec ce critère on voit que seule A1 est diagonalisable
(cette matrice est en fait déjà diagonale).

3) Puisque deux matrices semblables ont les mêmes valeurs propres avec même mul-
tiplicités, on en déduit que A1 n’est semblable à aucune autre de ces matrices, de même
pour A3. Il reste à examiner si A4 et A2 sont semblables. Or on constate que l’effet géo-
métrique de ces deux matrices sur les vecteurs de la base canonique est le même après
échange de e1 et e2. On a en effet

A2 · e1 = α e1

A2 · e2 = α e2

A2 · e3 = e2 + α e3

et


A4 · e1 = α e1

A4 · e2 = α e2

A4 · e3 = e1 + α e3,

Donc si on pose P =

0 1 0
1 0 0
0 0 1

 (c’est la matrice qui échange e1 et e2), alors on

vérifie directement que A4 = P −1A2P (observer que P −1 = P ). Les matrices A2 et A4
sont donc semblables.

Exercice 10. 1. Notons A =
(

a b
c d

)
, alors on a

χA = det
(

a − X b
c d − X

)
= X2 − (a + b)X + (ad − bc) = X2 − Tr(A) · X + det(A).

D’autre part, on a aussi

B = Cof(A)⊤ =
(

d −b
−c a

)
, (A + B) = (a + d)I2 et BA = (ad − bc)I2,

où I2 =
(

1 0
0 1

)
est la matrice identité. Donc

X2 − (A + B)X + BA = X2 + (a + d)X + (ad − bc)I2 = χA(X).
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2. On a
(X − B)(X − A) = X2 − XA − BX + BA,

donc, en utilisant le résultat en (a), on voit que

(X − B)(X − A) − χA(X) = AX − XA,

qui vaut 0 si et seulement si AX = XA.

3. On applique le résultat 2. à la matrice X = A, qui commute évidemment avec
elle-même. On conclut donc que

χA(A) = (A − B)(A − A) = 0 ∈ M2(K),

ce qui prouve le théorème de Cayley-Hamilton pour les matrices 2 × 2.
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