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Algebre linéaire avancée II Section de Physique Exercices
Série 3 6 mars 2025
Exercice 1. Notons X = (ﬁ d)’ alors on calcule directement que
AX — XA= ( N d_“).
0 —c

On voit que X commute avec A si et seulement si a = d et ¢ = 0, donc X est une matrice

a b
du type X = (O a)'

Exercice 2. 1. Une base du noyau est fournie par : {(1,0,1)}.
2. Le rang de A est égal a 2.
3.0nays=-X?>+2X?-10X = —X (X% - 2X + 10).
4. Le polynome caractéristique n’est pas scindé sur les réels, donc A n’est pas diago-
nalisable sur les réels.
5. Il'y a trois valeurs propres distinctes sur C (qui sont 0, 143, 1—3i), donc A est une
matrice diagonalisable sur les complexes (on peut aussi observer que sur le corps

des complexes, le polynome caractéristique est scindé avec des racines simples, en
effet x4 = —X(X —1—30)(X — 1+ 3i)).

Exercice 3. 1. Non. Par exemple, si P = (X —1)3 et Q = (X — 1)? ont les mémes
racines. L’affirmation est toutefois correcte si on suppose que les racines de f et g
sont simples, ou plus généralement qu’elles ont méme multiplicité.

2. Oui. Soit P = a9 + 1 X + ---a,X™ avec ag,ay, - ,a, € C et a, # 0. Donc

deg(f) =n.

Soit @ = by+b1 X +- - b, X" avec by, by, -+ , by, € Cet by, # 0. Donc deg(g) =
m.

Or, P—Q = (ap+a1 X+ - a, X")— (bo+b1 X +- - - b, X™) et le degré d’un terme
non nul dans cette formule ne dépasse pas max {n, m}. L’assertion s’en déduit.

Observons que le degré de P — () peut étre strictement plus petit que le maxi-
mum des degrés de P et de (). Par exemple, si P = X et Q = X —1,alors f—g =1

qui est de degré 0, strictement plus petit que le maximum des degrés de P et de
(2, qui valent 1 dans cet exemple.

3. Oui. On sait que a € C est une racine d'un polynéome @) € C[X] si et seulement
si Q(a) = 0. Maintenant posons Q = P — P(a). Alors g(a) = f(a) — f(a) =0 et
donc X — a divise @ = P — P(a). Mais cela se voit directement également, car
pour tout n € N*, on a

X" —a"= (X —a)(X" ' +aX" 2+ a2 X"+ 4 ad" X +a" Y,
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4. Non, car on a la factorisation X*+2 = (X + v/2i) (X — v/2i) dans C[X].

Exercice 4. 1. Le reste de la division de P par (7 est S; = —(9X +3) (et le quotient
est By = 2X?+4X%+5X); on a en effet

2X° + X? —2X? 4+ X —3=(X?-2X +2)(2X3 +4X? +5X) — (9X + 3),
c’est-a-dire P = Q - Ry + 5.
Appliquons 'algorithme pour trouver ce résultat. On a successivement :

P—2X3Q, =4X*—-3X3-2X*+ X -3
P—2X3Q; —4X%Q, =5X* - 10X*+X -3
P —2X3Q; —4X%Q, — 5XQ, = —9X — 3= —3(X +3),

ce qui montre que

P=(2X?+4X* +5X)Q; — 3(3X +1).

De méme, le reste de la division de P par Qs est Sy = X — 2 (et le quotient
est Ry = X%+ 3)

1
2X° 4+ X? —2X?+ X —3=(2X*? - 2) (X2+§>+(X—2),

c’est-a-dire P = Q5 - Ry + 95.
En effet, on a
P—X?Q,=X*+X-3
PoX'Q - =X -2,

ce qui montre que
1
P = (X2+§> Qr+ X —2.

2. On rappelle que ¢ € C est une racine de Qs si et seulement si Q2(¢) = 0. En
particulier pour un tel ¢ on a

P(C) = Q2(C) - Ra(C) + 52(C) = 52(¢) = ¢ — 2.

Les racines de Qo = 2X3 — 2 = 2(X? — 1) sont les racines cubiques de I'unité,

27 1 \/3 _ 27 1 . \/g

cest-a-dire, « = 1, f§ = e3 = 5 + @7 et v =e 3 = 5~ 27. Donc
P(1) = S3(1) = —1 et de méme
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2
/(45 -s(4-0) - 3-2

Remarquez qu’on a calculé ces valeurs en appliquant le polynéme Ry qui est
de degré 1 et en évitant de calculer avec le polyndéme (@), qui est de degré 5.

Exercice 5. 1. Comme
P=(X—-a)(X —a)=X*-2Re(a) X + |af,

ce qui montre que P est réel.
2. Supposons que @ est de la forme >, a, X* avec ag, a1, ,a, € R.

Comme z est une racine de g, on a g(z) = >_,_, arz® = 0. On obtient que

ou on a utilisé le fait que a, = ay, car a, € R.

3. Le seul polyndéme irréductible unitaire de degré 0 est le polynéme constant P = 1.
Soit maintenant, P € R[X] un polynéme irréductible unitaire de degré n > 1.
Comme tout polynéme de degré n > 1 admet une racine dans C, on prend z une
racine de f dans C.

Siz € R, alors X — z divise P et donc P = X — z car P est irréductible.

Si z n’est pas réel, son conjugué Z est aussi une racine de P d’apres b), et donc
(X — 2)(X —Z) divise P.

Comme (X — 2)(X — z) € R[X] d’apres a), et comme P est irréductible,
P=(X—-2)(X-2).

Notons que le discriminant de (X — z)(X — Z) est négatif car les racines ne
sont pas réelles.

Conclusion : Les polyndmes irréductibles unitaires dans R[X] sont donc les
polyndémes suivants :
(a) Le polynéme constant 1 € R[X].
(b) Les polynémes de la forme X + a avec a € R.

(c) Les polyndmes de la forme X? + bX + ¢, avec b,c € R, et sans racine réelle
(c’est-a-dire tel que b? — 4c < 0).
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Exercice 6. 1 L’hypothese fog # go f entraine que f et g sont non nuls. Supposons par
I’absurde que f et g sont linéairement dépendants, alors il existe A € K tel que f = Ag,
mais dans ce cas f et g commutent.

(b) Si f € GL(V), alors 0 n’est pas valeur propre de f (car f est inversible, et 0 € o(f)
implique que dim Ker(f) > 0). Soit A € o(f), et soit v € V'\ {0} un vecteur propre de f
de valeur propre A. Alors,

f)=Xv <<= v=f1v) <<= [fHu)=21"TAv) =",

ce qui montre que A\™! € o(f71) et v € Eyx-1(f7'). L’argument étant symétrique, on en
déduit que A € K\ {0} est valeur propre de f si et seulement A\~ est valeur propre de
f~1. De plus, on a

Ex(f) = Ex-1(f7):

Les multiplicités géométriques de X pour f et de A= pour f~! sont donc les mémes.

Exercice 7. 1. Supposons que x € Ker(f), alors
flg(x)) = fog(x) =go f(z) =g(f(x)) = g(0) = 0.
donc g(z) € Ker(f), ce qui prouve que le noyau de f est invariant par g.

De méme, soit y € Im(f), alors il existe x € V tel que f(z) =y, alors on a

g(y) =go f(z) = fog(z)= f(g9(x)) € Im(f),

ce qui montre que l'image de f est invariant par g.
2. Si F, est un espace propre de f associé a la valeur propre A alors si x € E)

flz) = Az

Ainsi g étant un endomorphisme, on a

flg(x)) = fog(x) =go f(z) =g(Az) = Ag(z).

On peut donc conclure que E) est invariant par g.

Exercice 8. La réponse est que rang(f) = 5 pour tout a. En effet, on remarque que
Xp=X - (X?+aX+1)-(X°-1),

en particulier A = 0 est valeur propre et sa multiplicité algébrique est 1. Donc la multipli-
cité géométrique de A = 0 est aussi égale a 1. On rappelle que pour toute valeur propre
A, on a

1 < multgeom, (f) < multalg, (f).

Donc dim(Ker(f)) = dim(Ey(f)) = 1. Et par le théoréme du rang,
rang(f) = dim(Im(f)) = 6 — dim(Ker(f)) = 5.
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Exercice 9. 1) Pour chacune des quatre matrices, le polynéme caractéristique est x =
—(X — )3 et donc « est I'unique valeur propre dans les trois cas.

La multiplicité géométrique m de « se trouve en calculant la dimension du noyau
de A — al3 (une méthode efficace pour faire cela est de calculer le rang de A — aI3 et
d’appliquer le théoréme du rang).

On trouve que m = 3 pour Ay, m = 2 pour A, et Ay et m = 1 pour As.

2) Il y a plusieurs criteéres utiles pour la diagonalisabilité des matrices. L'un de ces
criteres dit que la somme des multiplicités géométriques des valeurs propres doit étre égale
a la dimension de 'espace vectoriel. Avec ce critére on voit que seule A; est diagonalisable
(cette matrice est en fait déja diagonale).

3) Puisque deux matrices semblables ont les mémes valeurs propres avec méme mul-
tiplicités, on en déduit que A; n’est semblable a aucune autre de ces matrices, de méme
pour As. Il reste a examiner si Ay et Ay sont semblables. Or on constate que I'effet géo-
métrique de ces deux matrices sur les vecteurs de la base canonique est le méme apres
échange de e; et e;. On a en effet

A2'€1:Oé€1 A4’€1:Oé61
Ag -9 =es et Ajy-es = ey
A2'63:€2+Oé63 A4'€3:€1+Oz€3,
010
Donc si on pose P = [ 1 0 0] (c’est la matrice qui échange e; et eg), alors on
0 01

vérifie directement que Ay = P71 A, P (observer que P~! = P). Les matrices Ay et Ay
sont donc semblables.

Exercice 10. 1. Notons A = (CCL 2), alors on a

Xa = det ( a—CX d—bX ) =X?—(a+b)X + (ad — bc) = X* — Tr(A) - X + det(A).
D’autre part, on a aussi

d —=b

—C a

B = Cof(A)T = ( ) , (A+B)=(a+d)I, et BA= (ad— bc)ly,

ouly = <(1) (1)> est la matrice identité. Donc

X?—(A+B)X +BA=X?+ (a4 d)X + (ad — bc)ly = xa(X).
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2.0n a

(X —B)(X —A)=X?—- XA - BX + BA,
donc, en utilisant le résultat en (a), on voit que
(X — B)(X — 4) — xa(X) = AX — XA,
qui vaut 0 si et seulement si AX = X A.

3. On applique le résultat 2. a la matrice X = A, qui commute évidemment avec
elle-méme. On conclut donc que

xa(A4) = (A= B)(A - A) =0 € My(K),

ce qui prouve le théoréme de Cayley-Hamilton pour les matrices 2 x 2.



